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A single algorithm for calculating thermodynamic systems whose volume is limited by a finite number of fa-
cility elements is constructed. Having a unified model at one’s disposal, it is possible to construct on its basis
mathematical models for specific structures. Practical examples of the realization of this approach in ballistic
compressors are considered.

Introduction. There are many gas-dynamic problems in solving which it is enough to restrict oneself to the
thermodynamics. Among them are the majority of problems on modeling the operation of ballistic devices used in sci-
entific investigations on plasma- and photochemistry, for pumping solid-state lasers, etc. [1–3].

Considering the mathematical models constructed for specific facilities of such a kind [4, 5]. it can easily be
seen that with increasing number of elements (pistons, diaphragms, valves) and parameters taken into account in the
calculation, the complexity of obtaining the input system of equations sharply increases. In actual fact, only the prob-
lems for elementary systems (a single-piston plasmatron with a diaphragm, a trunk system, simplified problems of
multi-stage compression, etc.) have been solved.

Now that a fairly large amount of experimental data on the operation of ballistic plasmatrons and similar de-
vices is available [4–7], the necessity of constructing a single algorithm for determining the thermal-energy charac-
teristics of gas and calculating the piston dynamics has arisen. The proposed scheme generalizing the experience of the
models used in practice fulfills these purposes.

Having a unified model at our disposal, we can both construct on its basis mathematical models for particular
structures and elucidate the most general principles and laws inherent in all systems of this kind on the whole.

Problem Formulation. We have a thermodynamic system whose volume is limited by a finite number of fa-
cility elements, with individual parts of this system interacting with one another. The mechanisms of such a coupling
can be quite different: heat and mass transfer through the nozzle parts of the devices, radiation heat exchange, heat
conduction through the walls, change in the state of the working-substance parameters due to the motion of the walls
(pistons), and so on. It is required to construct a mathematical model for calculating the operation dynamics and the
thermodynamic characteristics at each internal point of the device.

The calculations and experimental data show [5, 7] that such systems can be split into so-called sections —
parts of the space bounded by the walls — and the gas parameters in them can be assumed to be equal at all points
at a fixed instant of time. Each section has J inlets and outlets, the section walls are movable and permeable to radio
radiation, heat conduction, and other kinds of energy transfer (Fig. 1), and the interaction thereby is realized both be-
tween sections and with the environment. Therefore, in the presence of the heat exchange with the environment, it is
expedient to designate this environment as section 0.

The principle of splitting into sections can be extended to any gas thermodynamic systems where the follow-
ing conditions are met:

1) the gas parameters are equal inside a separated section and the rate of their change is much lower than the
disturbance propagation velocity in the section;
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2) the characteristic times of the intersection processes are much larger than the time of the sound wave pas-
sage between sections.

Construction of a Mathematical Model. As working media, we will consider gases with known equations of
state. For the sake of simplicity, we restrict ourselves to the case of a perfect gas, which will not affect the essence
and generality of the method. The change in the gas parameters in an individual section is described by a system ex-
pressing the mass and energy conservation laws [8]. Let us write the equations for an arbitrary ith section:

dmi

dt
 =  ∑ 

j

 Gij +  ∑ 

k

 gki ,
(1)

d (micViTi)
dt

 + pi 
dVi

dt
 =  ∑ 

j

 HijGij +  ∑ 
k

 qki . (2)

Subscripts ij indicate the heat and mass exchange between the ith and the other sections through the jth hole. The gas
flow through the chosen area Ξ is

G = ∫ 
S

ρw⋅dΞ .

The gas can flow into a section from other sections with high pressures and flow out into sections with low
pressures. To preserve a single-solution algorithm, for the gas flow between sections, we should write the gas flow
rate [8] as
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
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The use of the module operator in the formula for the second velocity aml permits taking into account the di-
rections of the gas flow.

Fig. 1. Arbitrary section of the facility.
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Let us split the ith-section surface σi into elementary walls with area dSi = nidSi and draw a radius vector
ri to each of them. Then the gas volume is

Vi = 
1
3

 ∫
σi

∫ r⋅dS , (4)

which follows, e.g., from the Ostrogradskii–Gauss formula. The section walls can change their position in the space,
as a result of which the volume of the section as a whole will change. Each radius vector points to an elementary
mass dmi, whose equation of motion is

dmir
..

i =  ∑ 
j

(dFi)j +  ∑ (dFi)
in

 +  ∑ 
j

(dFi)k−j
∗

 .

If by external forces we mean pressure forces, then

dFij = pidσij − pjdσji .

In problems with moving pistons, the wall coordinates change only along a certain x axis. This takes place,
e.g., when the piston wall is moving along the trunk axis. Then integral (4) can be given in the form

Vi (t) =  ∫ 
A(t)

B(t)

 Si (x, t) dx ,

where A(t) and B(t) are found from the equations of motion.
In this case, the walls with coordinates A and B defining the boundaries of Vi represent solid bodies with

masses

  ∫ 
mA

 dmi = mA ,   ∫ 

mB

 dmi = mB ,

so that the internal forces compensate for one another, and the equation of motion of the lth wall-piston (l = A, l =
B, ...) is

mpl 
d

2
xl

dt
2  =  ∑ 

j

 Flj +  ∑ 
k

 Flk
∗

 . (5)

It is convenient to solve system (1), (2), (5) in the variables T, ρ, and V (x = x(V)):

Vi (t) = ∫ 
xl

Si (x, t) dx , (6)

dρi

dt
 = 

1

Vi
  ∑ 

j

 Gml − 
ρi

Vi
 
dVi
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 + 

1
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  ∑ 
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 gki , (7)
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dt
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1

Vi
  ∑ 
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 − 

1

cViρiVi
  ∑ 

k

 qki , (8)

where Gml is determined by formula (3). The system is closed by the equations of state of the gas. The transition
from the heat capacities of gases cpi and cVi

 to their adiabatic indices γi and molar masses µi for a perfect gas is re-
alized with regard for the Mayer equation [8].
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The system of equations (6)–(8) can be written in the matrix form

d
dt

 

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_
, mp 
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 = 
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
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
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
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

 .

The bar over the factor indicates that multiplication of matrices yields vector equations which should be expanded in
projections.

The solution of this system at given initial conditions is the time-dependent macrostate matrix




ρ, T, 

dV
dt

, V


 = 















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dt
 V2
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ρNTN 
dVN

dt
 VN
















 .

In formula (9), by the sign * is meant the operand of the so-called conditional multiplication, whose rules are
analogous to the rules of multiplication of matrices with the difference being that for each nonzero term one also con-
siders the additional conditions determined for the antisymmetric term. In general, for two matrices A and B the con-
ditional multiplication should be understood to be such that the result of their multiplication is the matrix C (A∗ B =
C) each term of which ci is calculated according to the rule

ci =  ∑ 

j=1

n

 




aijbj ,   pj > pi ;

− ajibi ,   pj ≤ pi ,

where the condition has been determined by some feature P (in the present paper, by the section pressure). Detailed
explanations concerning the use of the matrix notation (9) will be given in example No. 2 in the next section.

System (9) gives
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The cross-section matrix components S in (9) are symmetric (Sij = Sji) if there are no additional devices in-
fluencing the flow from the ith section to the jth section when the direction of the process is changed (valves, nozzles
with a variable cross section, etc.).

The macrostate matrix may not be restricted to the parameters T, ρ, and V(x, dx/dt, σ) but can also incorpo-
rate other quantities: flow fields, electric and magnetic field strengths, degrees of ionization, etc. However, exchange
matrices, S, σ, and others, as well as matrices (9) in the conditional multiplication are always coupled. For example,
if we take into account the heat transfer Wi through the section walls, then a coupled matrix σ∗  will appear:

Wi = ασ∗
 (Ti − T0) .

Practical Application of the Proposed Model and Its Realization. Despite the standard general form of the
initial system of equations (9), specific examples of its realization in mathematical models are diverse. We will high-
light two of them.

Example No. 1. Two-stage ballistic plasmatron. Consider the obtained system (6)–(8) as applied to the two-
stage ballistic plasmatron (Fig. 2) [3]. It may be considered that initially the low-pressure chamber (LPC) contained a
driver gas (air) at some pressure p01 (up to 2 Pa) (the LPC will be considered in detail in example No. 2).

In the given device, there is practically no exchange with the environment; therefore, the 0th section is ex-
cluded. Here zero is used to designate the initial conditions.

The initial positions of the heavy piston 1 and the light piston 2 (Fig. 2) are rigidly fixed. The light piston
has a cross-over nozzle of diameter d2, and the gas is blown into the outlet chamber through a nozzle of diameter
d3. The plasmatron trunk contains the working gas at some pressure. The two-piston system permits obtaining higher
temperatures at lower pressures compared to the adiabatic single-piston compression [2, 3].

When the driver gas gets into the plasmatron trunk, the heavy piston comes into motion, compressing the
working gas. As experiments show [7], the light piston, as a consequence of inertia, remains practically stationary until
the heavy piston approaches it. As this takes place, the gas flows from the space between the pistons to the region
behind the second piston. Then the gas is recompressed by both pistons.

It is necessary to calculate the characteristics of the working gas (temperature, pressure, density) in the proc-
ess of compression and determine the laws of motion of the pistons.

We distinguish four sections (Fig. 2): 1 — LPC, 2 — between the first and second pistons, 3 — after the
second piston of the plasmatron, and 4 — outlet chamber (OC). There are two movable walls-pistons (l = 2).

To construct a mathematical model of the device, we make use of relations (6)–(8), taking into account (3).
The cross-section areas of the nozzles are: S1 = 0; S2 = πd2

2/4; S3 = πd3
2/4; and S4 = 0. The cross-section areas of the

sections are constant and equal to σ = πD2/4. We ignore the chemical processes (gki = 0, 8 i, k) and calculate the
radiation loss qki by the computational procedure of [9]. The other heat transfer processes (heat transfer through the
walls, convective heat exchange) play an insignificant role here, since the pulse durations are rather small.

Fig. 2. Scheme of the two-stage plasmatron.
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For the first section, the flow rate equation and the energy equation directly integrate (adiabatic processes). As
a result, the initial system of equations (6)–(8), (3) is simplified:

mp1 
d
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dt
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2
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
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
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

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(10)

where V1 = V01 + (πD2 ⁄ 4)(x1 − lp1/2); V2 = (πD2/4)((x2 − lp2
 ⁄ 2) − (x1 + lp1

 ⁄ 2));  V3 = (πD2/4)(L0 − (x2 + lp2
 ⁄ 2)); and

V4 = V04; the components Gml are calculated by formula (3). For the two-stage plasmatron, a system analogous to (10)
was first obtained by V. M. Shmelev and N. Ya. Vasilik (Institute of Physical Chemistry, Moscow) [4].

TABLE 1. Input Data for Calculating the BP-2 Ballistic Plasmatron

D, m d2, m d3, m x01, m x02, m L0, m lp1, m lp2, m V01, m3
V4, m3 mp1, kg mp2, kg

0.076 0.006 0(7) 0.041 0.665 0.84 0.08 0.08 1.48⋅10−3 2⋅10−3 3.0 1.0

TABLE 2. Initial Parameters of Gas for Calculations (1 and 2, Experiment Numbers)

Section
γ µ, kg/mole T0, K

ρ0, kg/m3
p0⋅105, Pa

1 2 1 2 1 2 1 2

1 1.4 1.4 0.028 0.028 300 1.138 1.138 100 100

2 1.4 1.67 0.028 0.131 300 1.138 5.33 1 1

3 1.4 1.67 0.028 0.131 300 1.138 5.33 1 1

4 1.4 1.4 0.028 0.028 300 1.138⋅10−4 1.138⋅10−4 10−4 10−4

826



Let us calculate the operating conditions of the two-stage plasmatron, for which experimental studies were
made earlier [7], and compare the results. The input data for the calculation are given in Tables 1 and 2.

In the first experiment, the compression process without forcing of the gas out of the plasmatron trunk (d3 =
0) is considered. The working gas is air. Figure 3a shows the pressure–time diagram for the 3rd section, and Fig. 3b
gives the pressure oscillogram for the same working conditions. Comparing these figures, it can be seen that on the
time scan the moments at which pulse peaks appear practically completely coincide. The difference between the calcu-
lated values of pressures p3 and the experimental data do not exceed 10.9% (the sensitivity corresponds to 1.47⋅106 Pa
per 1 mV). In the experiments, the variable component of the signal was fixed. The ray emergence in the region with

Fig. 3. Pressure p3 at air compression: a) calculation; b) experimental data.

Fig. 4. Pressure p3 at xenon compression: a) calculation; b) experimental data.
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negative values is not associated with the physical processes but is explained by the specificity of the oscilloscope op-
eration (capacitor overcharge) [7].

In the second experiment, xenon comparison at d3 = 0 and 7 mm was modeled. The difference between the
obtained values and the experimental data for the pressures in section 3 does not exceed 4.7%. In Fig. 4a, one can
discern the fine structure of the first compression impulse, which is unnoticeable on the oscillogram. It also becomes
possible to check other parameters that are not measured in the experiments. In Fig. 5, it is seen that at d3 = 7 mm
not all of the working-gas mass is transferred to the 4th section during the first compression impulse. For the plasma-
tron, the monopulse regime of operation is preferable. In the numerical experiment, selecting the nozzle diameter, one
can obtain exactly these operating conditions.

The experimental data were processed for a wide circle of problems in a wide range of temperatures and pres-
sures (up to 15,000 K and 1.3⋅108 Pa) for different kinds of the working substance (air, xenon, argon, helium, mixture
of gases). The results obtained permit speaking of calculation accuracies reasonable for engineering calculations (error
up to 15%). Modeling of the processes in the two-stage ballistic plasmatron permits gaining a deeper insight into the
physics of a process and opens up widespread possibilities for optimizing the facility.

Example No. 2. System for starting the ballistic plasmatron, LPC. Such systems use starting devices, whose
basic units are the plate 1 and the bottom of the valve 2, nearest to which is the plasmatron trunk 3 with a piston 4
(Fig. 6). First the driver gas is allowed to bleed into the LPC from the side of the plate bottom. As this takes place,
in the low-pressure chamber formed by elements 1 and 2 (Fig. 6) the pressure is the same everywhere because of the
gas flow through the hole O. The plasmatron is started by an electromagnetic valve with a hole of diameter dn. Due
to the pressure difference, the plate 1 goes down to close the hole O, and for the gas a passage with a cross section
S1 = πD1x1 (usually D3 C D1) is formed. The driver gas from the LPC swiftly flows into the trunk to set the first pis-
ton in motion.

We now proceed to the construction of a mathematical model of operation of the device. The following four
sections are distinguished:

1) section 0 — environment;
2) section 1 — space under the plate;
3) section 2 — LPC;
4) section 3 — in the trunk volume before the piston.
Let us make use of the matrix form (9) for composing the system. Determine the corresponding matrices

Fig. 5. Mass redistribution between sections in the course of the process
(xenon, d3 = 7 mm): 1) control total mass of gas in sections 2, 3, 4; 2) gas
mass in section 2; 3) same in section 3; 4) same in section 4.

Fig. 6. Scheme of the starting device.
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
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
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 ,   cpTρu = 













cp0T0ρ0u0

cp1T1ρ1u1
cp2T2ρ2u2

cp3T3ρ3u3













 ,   p = 












p0
p1
p2
p3












 ,

S = 











0
Sn
0
0

   

Sn
0
0
0

   

0
0
0
S1

   

0
0
S1
0










 ,   σ = 





0
0

   
St
0

   0
0
   

SD
SD




 ,   Q = 











0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0










 ,

(11)

where Sn = πdn
2/4; St = πdt

2/4; and SD = πD2/4. The matrix Q turns out to be zero, since under the conditions being
considered the mass and energy internal sources are practically absent, and the influence of the friction forces in such
a short time of motion can be neglected. The result of the conditional multiplication will be

dM
dt

 = S∗ρρu = 



























ρ1u1Sn ,   p1 > p0 ,

− ρ0u0Sn ,   p1 ≤ p0 ;





ρ0u0Sn ,   p0 > p1 ,

− ρ1u1Sn ,   p0 ≤ p1 ;





ρ3u3S1 ,   p3 > p2 ,

− ρ2u2S1 ,   p3 ≤ p2 ;





ρ2u2S1 ,   p2 > p3 ,

− ρ3u3S1 ,   p2 ≤ p3























 .

An analogous expression is obtained for dE/dt.
Since we have two moving walls, l = 2. Let us draw the x1 and x2 axes in the direction of the supposed mo-

tion of the plate and the piston, respectively (Fig. 6). Consequently, the equations for the velocities of motion dx
_

/dt =
w
__

 in the projections on these axes are dx1/dt = w1 and dx2/dt = w2.
We will consider that the working gas at the beginning of the compression stage does not influence the piston

dynamics. In actual fact, the pressure forces of the working gas at this instant are two orders of magnitude smaller
than the driver-gas forces and they can be neglected. In such a situation, in writing the equation of motion of the pis-
ton, it is enough to restrict ourselves to the consideration of the influence of one force, [σ⋅p]23 = p1πD2/4. Therefore,
the same σ matrix as in (11) is obtained.

Multiplying σ⋅p in accordance with (9) leads to the vector equations

d

dt
 



mp1 

dx
_

1

dt



 = p1St

____
 + p3SD

____
 ,   

d

dt
 



mp2 

dx
_

2

dt



 = p3SD

____
 ,

whose projections on the given directions x1 and x2 will be present in the sought system of equations.
In principle, at this point the model of the LPC operation can be considered to be constructed and we can

proceed with integrating the system of equations obtained. In this case, the problem solution can be simplified, taking
into consideration the direction of the processes: in the time interval under consideration, p0 < p1 and p3 < p2. Since the
temperature in the process varies within the limits of ∆Ti < 200 K, we have γ0 = γ1 = γ2 = γ3 = γ and the physical
properties of the gas in different sections are the same. We consider the gas to be perfect. The pressure difference be-
tween the sections quickly passes the critical mark and, therefore, we assume that the outflow rate is equal to the ve-
locity of sound in the critical cross section:
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ui = √γ 
R0

µi
 Ti  





2

γ + 1





γ+1

2(γ−1)
 = ai ,   8i = 0, 3

___
 .

We assume that the environment (section 0) has an unlimited store of energy and mass of the gas (dm0/dt =
0 and dE0/dt = 0). In the absence of mass sources the number of differential equations in the system can be decreased.
To this end, it is enough to express, e.g., the mass m3 in terms of the gas masses in the other sections.

On the basis of the foregoing, the operation of the starting device can be described by the following system
of differential equations:

mp1 
d

2
x1

dt
2

 = 
R0

µ
 




T3m3

x1 + (D ⁄ D1)2
 x2

 − 
T1m1 (t)

Lx − x1




 ,   mp2 

d
2
x2

dt
2  = 

R0

µ
 




T3m3

(D1
 ⁄ D1)2 x1 + x2




 ,

dm1

dt
 = − 

m1

Lx − x1
 a 





dn

dt





2

 ,   
dm2

dt
 = − 

m2
V2

 aS1 ,   m3 = m03 + m02 − m2 (t) ,

dT1

dt
 = − (γ − 1) 

T1

V1
 




dV1
dt

 + aSn



 ,   

dT2

dt
 = − (γ − 1) 

T2

V2
 




dV2

dt
 + aS1




 ,

dT3

dt
 = 

aS1

V2
 
m2

m3
 (γT2 − T3) − (γ − 1) 

T3
V3

 
dV3

dt
 ,

(12)

where V1 = π(Lx − x1)dt
2/4; V2 = πlb(D2

2 − dt
2)/4 + πL1(D2

2 − D1
2)/4; and V3 = πx1D1

2 ⁄ 4 + πx2D2/4.
Let us perform calculations for the starting device used in the BP2 ballistic plasmatron (Institute of Chemical

Physics, Russian Academy of Sciences). Its characteristics are given in Table 3.
Solving system (12) by numerical methods, it has been obtained that the process of shifting the plate to the

extreme lower position takes 1.3 msec. During this time the piston manages to travel a distance of x2 = 0.0116 m,
which is comparable to the pass of the plate itself (lb = 0.014 m).

The curves of the change in the pressures in the LPC, in the trunk, and under the plate are given in Fig. 7.
It is seen that at the beginning of the plate motion the gas pressure in the trunk rapidly (during t = 1.3 msec) in-
creases (Fig. 7, curve 3), approaching the LPC pressure (point A). The kink (point B) corresponds to the moment the
plate contacts the plasmatron bottom. In the plot, at t = 0.027 sec one can see a slight short-time increase in the pres-
sure under the plate (point C) due to the compression by the gas from the LPC.

Because of the flow through the "nozzle" of area πD1x1(t), the gas temperature in the trunk T3 (Fig. 8) at the
first stage is even higher than the initial temperature (T3max = 406 K), but with further expansion it decreases even
faster than the LPC temperature. This is due to the fact that beginning at some instant of time the process of gas ex-
pansion prevails over the process of gas inflow from the LPC. The gas temperature in the LPC (Fig. 8, curve 2) de-
creases not only because of the expansion but also due to the gas-dynamic cooling in flowing out of the "nozzle." For
comparison, Figure 8 gives the curve of the temperature change at adiabatic expansion ignoring the flow and, conse-
quently, the difference in temperatures T2 and T3. The maximum value of T3 is attained at that instant of time when
the gas mass m3 is still small, and this short-time increase in the temperature has no marked effect on the operation
dynamics of the device. Subsequently, the deviation of temperatures T2 and T3 from the adiabatic temperature Tad is
no more than 4%, so that in engineering calculations this process can be considered as adiabatic expansion from a res-
ervoir of volume V2 + V3.

TABLE 3. Starting Device Characteristics (linear sizes are given in millimeters)

D D1 D2 D3 dt dn L1 Lx lb mp1, kg mp2, kg

76 146 194 116 122 14 94 20 14 7.60 2.83
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As the calculations have shown, the nozzle diameter dn influences not only the delay time of the start of mo-
tion of the plate.

Let us make relevant analytical estimates. The starting time of the main valve is determined by the ratio be-
tween the pressure forces in the trunk (initially equal to the atmospheric pressure) and the pressure forces under the
plate. However, since the plate motion causes an additional increase in the pressure and temperature in the outflow, it
makes sense to perform calculations in terms of the gas density. Then from the gas-flow equation we determine the
time before the start of plate motion as

td = 




dt

dn





2

 
Lx

a
 ln 





ρ01

ρH1




 .

For the device under consideration, the deviation from the numerical calculations by td is 0.90%. In time τ,
the piston manages to travel a distance comparable to the pass of the plate (x2(τ) = 0.0116 m for the given geometry).
As was proposed previously, we represent the process of gas flow from the LPC and its expansion in the trunk by the
adiabatic expansion in the volume V2 + V3(τ):

pad (τ) = p02 




V2

V2 + V3 (τ)




γ

 ,   V3 (τ) = x2 (τ) 
πD

2

4
 C 

πD
2

4
 lb . (13)

According to (13), pad(τ) = 1.29⋅107 Pa, which is 1.8% lower than the calculated one. The corresponding tem-
perature Tad(τ) = 280 K, although the calculated temperature is 297 K. As mentioned above, this is due to the fact
that besides the adiabatic expansion leading to a decrease in the temperature, the nonisotropic gas flow increasing the
temperature also plays a role in this process.

Thus, in engineering calculations accurate up to 5% the whole starting process can be replaced by the adi-
abatic process of gas expansion to the piston position approximately equal to the pass of the plate. The entire process
takes time t = td + τ. Integration of system (12) becomes unnecessary, as a rule, but with its help one can always
evaluate the scale of deviations and accuracy of calculations. On the whole, it is enough to restrict oneself to formulas
(13), which proves the correctness of the assumption about the LPC made in the first example.

Further calculations for the plasmatron can be started with the moment the plate contacts its bottom, using, as
the initial conditions, either numerical or approximate analytical calculations.

Drawing preliminary conclusions, we note that the matrix form of writing used in this example initially takes
into account all variants of the course of the processes. And simplification of the system occurs at the stage of eluci-
dation of the features of the problem formulated.

System (6)–(9) is reduced to a system of first-order differential equations by introducing L variables wli =
dxli/dt (l = 1, L

____
). Thus, for a device consisting of N sections we have 2(N + L) nonlinear first-order equations. They

Fig. 7. Pressure variation under the plate (1), in the LPC (2), and in the trunk
(3).

Fig. 8. Gas temperatures in the LPC (1), in the trunk (2), and at adiabatic ex-
pansion (3).
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become dimensionless if we assign the variables to their initial values, e.g., in section 1. For such systems the
Cauchy theorem holds [10]. Analysis of this system permits the conclusion that a solution of (6)–(9) exists and is
unique up to the moment when the volume of one of the sections becomes equal to 0 (Vi = 0) (or if the same hap-
pens to the gas density (pi = 0)). Using also the dynamic equation of impact, one can obtain unique solutions
throughout the time interval under investigation.

CONCLUSIONS

The proposed approach based on splitting into sections is acceptable for calculating a whole class of multi-
stage devices. It permits constructing particular models, using a single mathematical algorithm. The advantages of such
an approach are the more pronounced, the more complicated the system (the larger the number of components and
units in the structure). The obtained results on the existence and uniqueness of a general system of equations are valid
for a whole class of thermodynamic models of technical devices.

NOTATION

A, arbitrary matrix; a, velocity of sound, m/sec; ai, velocity of sound in the ith section, m/sec; aml, velocity
of sound in the nozzle of transition from the mth to the lth section, m/sec; aij and aji, matrix A components; A(t) and
B(t), limits of integration; B, arbitrary matrix; bi and bj, components of matrix B; C, arbitrary matrix; cp, heat matrix
of gases; ci, matrix C components; cpi and cpm, specific heats of gas at a constant pressure in the ith and mth sections,
J/(kg⋅K); cVi, specific heat of gas at a constant volume in the ith section, J/(kg⋅K); D, piston diameter, m; D1, outside
diameter of the plate, m; D2, inside diameter of the LPC, m; D3, channel diameter, m; d2, diameter of the cross-over
nozzle in the light piston, m; d3, diameter of the outlet chamber nozzle, m; dn, diameter of the valve port, m; dt, in-
side diameter of the plate, m; dFij, projection of external forces acting on an element of dmi, N; (dFi)k–j

∗ , nonconserva-
tive forces arising inside the element, N; (dFi)

in, interaction forces between wall elements, N; (dFi)j, external forces
acting on an element of dmi, N; dmi, elementary mass, kg; dSi, elementary wall area, m2; E, energy matrix of gases;
E, energy, J; E0, energy in the 0th section, J; Flk

∗ , external nonconservative forces in the wall, N; Ffr1 and Ffr2, trunk
friction forces of the first and second pistons, N; Fij, projections of forces acting on elements of the wall l from the
side of other sections, N; G, gas flow rate, kg/sec; Gij and GiJ, gas flow rate in the ith section through the jth and Jth
ports, kg/sec; Gml, gas flow rate in the mth section through the lth port, kg/sec; gki, powers of the kth sources of mass
in the ith section, kg/sec; Hij, specific enthalpy, J/kg; J, total number of inlets and outlets in a section; km, critical
pressure ratio for the mth section; L, number of first-order equations; L0, length of the working part of the plasmatron
trunk, m; L1, height of the plate, m; Lx, plate pass (along the x axis), m; l, wall-piston number; lp1 and lp2, lengths of
the first and second pistons, m; lb, gap width, m; M, matrix of gas masses; mp, matrix of piston masses; M01, constant
mass of gas in the 1st section, kg; m02 and m03, initial masses of gas in the 2nd and 3rd sections, kg; m0, m1, m2,
and m3, gas mass in the 0th, 1st, 2nd, and 3rd sections, kg; mA and mB, masses of walls A and B; mi, gas mass in the
ith section, kg; mpl, masses of pistons forming a section wall, kg; mp1 and mp2, masses of the 1st and 2nd pistons, kg;
N, number of sections; ni, normal to the surface; P, sign matrix; p, pressure matrix; p0, initial pressure of gas, Pa; p01,
initial pressure in the 1st section, Pa; p1, p2, p3, and p4, gas pressures in the 1st, 2nd, 3rd, and 4th sections, Pa; pad,
pressure corresponding to the adiabatic process, Pa; pi, pj, pl, and pm, gas pressures in the ith, jth, lth, and mth sec-
tions, Pa; Q, disturbance matrix; qki, powers of the kth energy sources in the ith section, W; qrad, powers of radiation
losses, W; r, radius vector; r

..
, second time derivative of the radius vector; ri, radius vector for the ith section; R0, uni-

versal gas constant, J/(mole⋅K); S, nozzle section matrix; S, port area, m2; S1, S2, S3, and S4, section areas of the 1st,
2nd, 3rd, and 4th nozzles, m2; Si, area of the ith section wall, m2; SD, section area of the plasmatron trunk, m2; Sji
and Sij, components of the nozzle section matrix; Sml, nozzle section area in the gas flow from the mth section to the
lth section, m2; St, section area of the plate, m2; Sn, section area of the valve, m2; T, temperature matrix; T0, initial
temperature, K; T01, initial temperature in the 1st section, K; T2, T3, and T4, temperatures in the 2nd, 3rd, and 4th
sections, K; Ti and Tm, temperatures of gases in the ith and mth sections, K; Tad, temperature in the adiabatic process,
K; t, time, sec; td, time before the start of motion of the plate, sec; u, matrix of gas flow velocities; u, gas flow ve-
locity, m/sec; ui, matrix u components; V, volume matrix; V01 and V04, initial volumes of the 1st and 4th sections;
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Vi, gas volume in the ith section, m3; w, velocity vector; Wi, power of heat transfer through the walls, W; w1 and
w2, velocities of the 1st and 2nd walls, m/sec; wli, velocity of the lth wall of the ith section, m/sec; x

_
, displacement

vector matrix; x
_
, wall displacement vectors; x

_
1 and x

_
2, displacement vectors of the 1st and 2nd walls; x, coordinate

axis; x01 and x02, initial coordinates of the 1st and 2nd walls, m; x1 and x2, coordinates of the 1st and 2nd walls, m;
xl, coordinate of the lth wall, m; xli, coordinate of the lth wall of the ith section, m; α, heat transfer coefficient,
W/(m2⋅K); γ, adiabatic index; γi, adiabatic index in the ith section; γm, adiabatic index in the mth section; ∆Ti, tem-
perature drop in the ith section, K; ρ, gas-density matrix; ρ, gas density, kg/m3; ρ2, ρ3, and ρ4, gas densities in the
2nd, 3rd, and 4th sections, kg/m3; ρm, gas density in the mth section, kg/m3; ρH1, gas density in the 1st section at
atmospheric pressure at height H, kg/m3; µ, molar mass of gas, kg/mole; µ1, µ2, and µ3, molar masses of gases in the
1st, 2nd, and 3rd sections, kg/mole; µi and µm, molar masses of gases in the ith and mth sections, kg/mole; σ, wall
section matrix; σ∗ , heat-transfer surface matrix; σ, section of one wall, m2; σ∗ , heat-transfer surface, m2; σi, inner sur-
face area of the ith section, m2; σij, part of the dmi element surface on which pi acts, m2; σji, part of the dmi element
surface in which pj acts, m2; τ, time of pass of the plate, sec; Ξ, separated area, m2. Subscripts: 0, initial conditions;
01, initial parameters in the 1st section; ad, adiabatic; b, gap; fr1, friction in the 1st wall; fr2, friction in the 2nd wall;
i, section number; in, internal; j, port number; k, source number; max, maximum value; n, nozzle; p, piston; p1, 1st
piston; p2, 2nd piston; rad, radiation loss; t, thin-walled plate; d, before motion.
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